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Abstract

Forced convection from a heated cylinder performing rotational oscillation about its own axis and placed in a
uniform stream is investigated. The governing equations of motion and energy are solved numerically to determine

the ¯ow ®eld characteristics and the heat transfer coe�cients. The main dominating parameters are Reynolds
numbers, Re, Prandtl number, Pr, amplitude of oscillation, YA, and the frequency ratio, FR, which represents the
ratio between the frequency of oscillation, f, and the natural frequency of vortex shedding, f0. The ranges considered

for these parameters are 40RReR200, 0RYARp and 0RFRR2, while the Prandtl number is kept constant at 0.7.
The lock-on phenomenon has been detected and its e�ect on the thermal ®eld has been determined. The results
show that the lock-on phenomenon occurs within a band of frequency near the natural frequency and the heat

transfer coe�cient has shown appreciable increase in the lock-on frequency range. 7 2000 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

The circular cylinder has long inspired researchers as

a successful model for studying important aspects of

heat transfer and hydrodynamics associated with

unsteady ¯ows over blu� bodies. In the case of ¯ow

past stationary cylinder, as Reynolds number exceeds

about 40, alternating vortices are shed periodically and

arranged downstream in a Karman vortex street. This

vortex shedding process is found to cause unsteady

¯ow behavior near the cylinder surface and in turn

enhance heat transfer. This heat transfer enhancement

under natural shedding process has stimulated the

interest of researchers to study the potential of en-

hancing heat convection using various forms of

unsteady excitations. Among these is the use of forced

oscillations.

When a cylinder performs rectilinear oscillations at a

frequency close to the natural shedding frequency in

the case of transverse oscillations or twice the natural

shedding frequency in the case of in-line oscillations,

vortices start shedding at the same forcing frequency.

In the case of rotational oscillations, vortices are shed

at the same forcing frequency only when the frequency

is within a range bracketing the natural shedding fre-

quency. This is called the lock-on phenomenon and is

reported for rectilinear oscillation in the works of

Tanida et al. [1], Bishop and Hassan [2], Hurlbut et al.

[3], Stansby [4] and Gri�n and Ramberg [5].

The lock-on phenomenon in the case of a cylinder

performing rotational oscillations in a cross stream
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was reported by only few investigators. Okajima et al.

[6] was the ®rst to report this phenomenon when he
investigated the problem theoretically in the range of
Re from 40 to 80 and experimentally in the range from

80 to 6100. Tokumaru et al. [7] also reported the lock-
on phenomenon in his experimental study of rotary os-
cillation control of a cylinder wake at Re � 15,000: Lu
and Sato [8] reported the phenomenon when they
investigated numerically the same problem mainly at

Re � 1000 while Chou [9] reported it at Re � 500,
1000. The other authors who investigated the same
problem did not report this phenomenon because of

either using the boundary-layer assumption, as in the
work by Hori [10], or utilizing a range of frequency far

away from the natural shedding frequency, as in the
work by Tanida [11]. Flow over a rotationally oscillat-
ing cylinder was also investigated by Wu et al. [12] at

frequencies equal or near the natural shedding fre-
quency. The study has shown that a resonant ¯ow
state was achieved with lift and drag components

reaching their maximum. Moreover, Tokumaru et al.
[13] investigated the lift variation when a cylinder ex-

ecutes rotary oscillation with net rate of rotation,
whereas, Filler et al. [14] investigated the frequency re-
sponse of the shear layers separating from a cylinder

performing rotational oscillations with small ampli-
tudes.

Experimental investigation of the problem of forced
convection from a cylinder performing in-line or trans-
verse oscillations was carried out by several research-

ers. In the case of in-line oscillation, Zijnen [15]
observed a decrease in the heat transfer for low Rey-
nolds number ¯ows �Re < 5), while Leung et al. [16]

found that for Re < 15,000 the heat transfer rates may
be enhanced as either the frequency or amplitude of

oscillation is increased. Takahashi and Endoh [17]
investigated the same problem experimentally and
observed an increase in heat transfer provided that the

velocity amplitude was above a certain limit. However,
for the case of transverse oscillations, con¯icting
results were obtained by several authors. For example,

Kezios and Prasanna [18] reported about 20% increase
in heat transfer rates, while the experimental study by

Sreenivasan and Ramashandran [19] showed no ap-
preciable increase in heat transfer. On the other hand,
Saxena and Laird [20] reported signi®cant increase in

heat rates at Re � 3500 which was found to be coinci-
dent with larger ¯ow disturbances that result when the

frequency and amplitude of oscillation tend to force
eddies to lock-on to the cylinder oscillation. In their
work, Chin-Hsiang et al. [21] reported a maximum of

34% increase in heat transfer within the range of par-
ameters considered in their experiments. They attribu-
ted this increase to the lock-on phenomenon.

The ®rst theoretical study of forced convection from
an oscillating cylinder was reported by Karanth et al.

[22] who obtained numerical solutions for both cases
of in-line and transverse oscillations. However, in their
calculation, the Reynolds number is ®xed at 200 and
the cylinder is considered to oscillate exactly at a ®xed

lock-on frequency which perhaps explains the increase
in heat rates that they have reported for both types of
oscillation. A more thorough investigation of the e�ect

of the lock-on phenomenon on heat transfer was
reported by Cheng et al. [23]. Within the lock-on fre-
quency range, they found an appreciable increase in

heat transfer, however, outside that range, the heat
transfer was almost una�ected by oscillations. A corre-
lation expressing the dependence of heat transfer on
the dominant parameters in the lock-on regime was

presented.
Based on the above literature search, it is clear that

several investigators focused on the e�ect of rectilinear

oscillations on heat transfer, while little attention was
given to the e�ect of rotational oscillations. The only
theoretical study on the e�ect of rotational oscillations

was carried out by Childs and Mayle [24]. The study
was based on boundary-layer simpli®cations and lim-
ited to very small amplitudes. The results showed no

enhancement in heat transfer which was attributed to
the aforementioned assumptions. The main objective
of this work is to study the e�ect of rotational oscil-
lation on the local and the time-average heat transfer

from a cylinder placed in a cross stream with emphasis
on the lock-on phenomenon. The ¯ow is assumed to
be laminar and two-dimensional, and the oscillations

are only harmonic.

2. Problem statement and formulation

Fig. 1 shows the physical model where a cylinder of
radius c is placed horizontally in an unbounded, cross-
stream with uniform approaching velocity V. The

cylinder surface is maintained at a constant tempera-
ture Tw and is rotationally oscillating about its own
axis with harmonic motion of the form:

Fig. 1. Coordinate system.
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Y � ÿYA cos�2pft� �1�

where Y is the angular displacement and t is the time.
YA and f are the angular amplitude and frequency of

oscillation, respectively. The conservation equations
that govern the laminar, two-dimensional motion of
incompressible ¯uid are the continuity and momentum

equations. The analysis of heat convection is based on
the two-dimensional unsteady energy conservation
principle. In cylindrical coordinates, the governing
equations in the stream function-vorticity form are

expressed as:

@z 0

@t
� @c 0

r 0@y
@z 0

@ r 0
ÿ @c 0

r 0@ r 0
@z 0
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� nr2z 0 �2�
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where T is the ¯uid temperature, c 0 is the stream func-
tion and z 0 is the vorticity de®ned as

z 0 �
�
@u 0y
@ r 0
� u 0y

r 0
ÿ @u 0r

r 0@y

�
The boundary conditions to be satis®ed are the no-
slip, impermeability and isothermal conditions on the
cylinder surface together with the free stream con-

ditions far away. These conditions can be expressed as

c 0 � @c 0

@y
� 0,

@c 0

@r 0
� ÿu 0w, and T � Tw at r 0 � c,

@c 0
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4r 0V cos y,
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The dimensionless forms of the above equations are
obtained by introducing the following dimensionless

quantities.

r � r 0

c
, t � t

V

c
, c � c 0

cV
, z � ÿz 0 c

V
, and

f � �Tÿ T1�=�Ts ÿ T1�

Using the above transformation and introducing the

modi®ed polar coordinates �x, y� where x � ln r, the
equations can be written as:
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where Re � 2cV=n is the Reynolds number and Pr �
mcp=k is the Prandtl number. The cylinder surface

dimensionless velocity can be expressed as

Uw � a sin�pSt� �9�

where a represents the velocity amplitude of oscillation
and S is the dimensionless forcing frequency

�� 2cf=V). The dimensionless form of the boundary
conditions given in Eq. (5) can be expressed as:

c � @c
@y
� 0,

@c
@x
� ÿa sin�pSt�, and f � 1 at

x � 0,

@c
@y
4eÿx cos y,

@c
@x
4 ÿ eÿx sin y, z40 and

f40 as x41
�10�

3. The method of solution

The method of solution is based on integrating the
governing equations of motion and energy in time to
obtain the velocity and temperature ®elds. Using the
series truncation method and following the works of

Collins and Dennis [25] and Badr and Dennis [26], the
dimensionless stream function c, vorticity z and tem-
perature f are approximated using Fourier series

expansions as follows:

c�x, y, t� � 1

2
F0�x, t� �

XN
n�1

�
fn�x, t�sin�ny�

� Fn�x, t�cos�ny��,

z�x, y, t� � 1

2
G0�x, t� �

XN
n�1

�
gn�x, t�sin�ny�

� Gn�x, t�cos�ny��
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f�x, y, t� � 1

2
H0�x, t� �

XN
n�1

�
hn�x, t�sin�ny�

�Hn�x, t�cos�ny�
�

�11�

where F0, fn, Fn, G0, gn, Gn, H0, hn, and Hn are the

Fourier coe�cients and N represents the order of trun-
cation. Substitution of Eq. (11) into Eqs. (3) and (4)
and using simple mathematical analysis results in the

following set of di�erential equations:
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where S0, Sn1, Sn2, Z0, Zn1 and Zn2 are all easily ident-

i®able functions of x and t. Eqs. (12a)±(12c) de®ne a
set of �2N� 1� ordinary di�erential equations and each

of Eqs. (13) and (14) de®ne another set of �2N� 1�
partial di�erential equations. All these equations
�6N� 3� have to be solved at every time step to get the

details of the ¯ow and thermal ®elds. The boundary
conditions for all functions present in Eqs. (12)±(14)
are obtained from Eqs. (10) and can be expressed as

F0 � Fn � fn � @Fn=@x � @ fn=@x � 0,

@F0=@x � ÿ2a sin�pSt�,

H0 � 2, Hn � hn � 0 at x � 0, �15a�

and

F0, @F0=@x, Fn, @Fn=@x40, fn4d1, n,

eÿx@ fn=@x4d1, n,

G0, Gn, gn40, and H0, Hn, hn40 as x41 �15b�

Integrating both sides of Eq. (12a) with respect to x
between x � 0 and 1 and using the boundary con-
ditions in Eq. (15) gives the following integral con-

dition:�1
0

e2xG0 dx � 2a sin�pSt� �16a�

Integrating both sides of Eqs. (12b) and (12c) after
multiplying by eÿnx and making use of the boundary

conditions (15), one can obtain the following integral
conditions�1
0

e
�2ÿn�xgn dx � 2d1, n �16b�

�1
0

e
�2ÿn�xGn dx � 0 �16c�

where

d1, n �
�
1 when n � 1
0 when n6�1

The above integral conditions are used at every time
step to calculate the values of the functions G0, gn and
Gn on the cylinder surface �x � 0). These functions are

then used to compute accurately the vorticity distri-
bution on the cylinder surface. The ®rst condition
(16a) is essential to ensure the periodicity of the press-

ure on the surface.
In this study, it is assumed that the ¯ow and the

imposed rotational oscillatory motion start simul-
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taneously and impulsively from rest. The cylinder sur-
face temperature is assumed as well to increase sud-

denly to Tw: The ¯ow ®eld structure at small times
following the impulsive ¯uid motion is characterized
by a very thin boundary-layer region close to the cylin-

der surface bounded by a potential ¯ow elsewhere. For
proper scaling at small time, we use the boundary-
layer coordinates �z, t� de®ned as x � lz, where l �
2
������������
2t=Re
p

:
Now, by introducing c� � c=l, and z� � lz and

closely following the methodology of Collins and Den-

nis [25] and Badr and Dennis [26], the initial solutions
at t � 0� are found to be
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ÿ
1ÿerf�z���pÿ1=2
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ÿ
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2
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2

sin�y� �18�

f�z, 0� � ÿerf
ÿ
z
������
Pr
p �

� 1 �19�

Eq. (19) allows starting the integration of the energy
equation to be carried out simultaneously with the

¯ow equations starting from t � 0:
The local and average Nusselt numbers are de®ned

as

Nu � hd

k
, Nu �

�hd

k
�20�

where, h and �h are the local and average heat transfer
coe�cients which are de®ned as
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, �h � 1

2p

�2p
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where q 0 is heat transfer rate given by q 0 �ÿk @T@ r 0 jr 0�c:
From the above de®nitions and using Eq. (11), one

can deduce
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The time-averaged Nusselt number is obtained from

Nu � 1

t2 ÿ t1

�t2
t1

Nu dt �23�

where the time period between t1 and t2 is taken after

reaching the quasi-steady state and covering more than
one cycle. The drag and lift coe�cients can be
expressed in terms of Fourier coe�cients as

CD � 2p
Re

(
g1�0, t� ÿ

�
@g1
@x

�
x�0

)
and

CL � ÿ 2p
Re

(
G1�0, t� ÿ

�
@G1

@x

�
x�0

) �24�

The time variation of CL is used to determine the fre-

quency of vortex shedding.

4. Results and discussion

4.1. Accuracy of the method of solution

The case of ¯ow over and heat transfer from a
stationary cylinder was used to test the accuracy of the
method of solution and the computational scheme.

The phenomenon of vortex shedding was ®rst exam-
ined at three Reynolds numbers. The dimensionless
frequency of vortex shedding is normally expressed in

terms of the natural Strouhal number, S0 � F0d=V,
where f0 is the vortex shedding frequency. The pre-
dicted values of Strouhal number at Reynolds numbers

Re � 80, 100 and 200 are shown in Table 1 together
with the experimental measurements reported by
Roshko [27] and Williamson [28]. The table also shows

Fig. 2. Time variation of CD, CL and N in the case of a ®xed

cylinder at Re � 200:
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the values of the time-averaged Nusselt number
obtained from the present study for the case of forced
convection together with the range of results reported
in the literature by Chin-Hsiang et al. [21], Eckert and

Soehngen [29], Kramers [30], Richardson [31], Morgan
[32], Jain and Goel [33] and Rashid [34]. The present
results lie approximately in the middle of the range of

dispersed results reported by the other researchers.
Fig. 2 shows the time variation of the average Nusselt
number, Nu, and the drag and lift coe�cients, CD and

CL, at Re � 200: While CL oscillates with the same fre-
quency of vortex shedding, CD and Nu oscillate with
twice of that frequency. This is mainly due to the
nature of the vortex shedding mechanism in which vor-

tices of opposite circulation shed alternately from the
upper and lower sides of the cylinder surface. The
period of CD and Nu oscillations is the same as the

time taken to detach one vortex, while the period of
CL oscillation is equal to the time taken to detach two
vortices from the upper and lower sides of the surface.

The incremental change in CL is positive for one vor-
tex and negative for the other because of the opposite
circulation which is not the same for CD and Nu: The
contour plots of isotherm patterns during one complete
cycle of vortex shedding are shown in Fig. 3 for the
case of Re � 200: It can be seen that the isotherm con-
tours are very close near the cylinder surface and far

apart away from it, which indicate large temperature
gradients near the surface and small gradients far
away.

Fig. 4 shows the variation of the local Nusselt num-
ber distribution over the surface during one complete
cycle of vortex shedding for the same case �Re � 200).

At all times, the maximum heat transfer rate is found
near the front stagnation point y � 1808: However,
due to vortex shedding, the local heat transfer on the
rear side of the cylinder improves, showing another

local peak near y � 3608: This local improvement in
heat transfer increases the average heat transfer rate in
comparison with the no vortex shedding solution. It

can be also seen that the local Nusselt number distri-
butions during one complete cycle are almost
unchanged over most of the cylinder surface except on

the rear part where remarkable di�erences are found
as a result of periodic shedding of vortices. The local

Nusselt number distributions at the beginning and at
the end of the cycle con®rm the cyclic behavior of the
thermal ®eld.

Table 1

Predicted Strouhal number �S0� and Nusselt number �Nu� for the case of ®xed cylinder and comparison with previous studies

Re S0 Nu

Present study Roshko [27] Williamson [28] Present study Range of results [21,29±34]

80 0.156 0.155 0.153 4.80 4.59±4.95

100 0.16 0.165 0.164 5.31 4.769±5.52

200 0.18 0.18±0.2 0.183 6.99 6.67±7.8

Fig. 3. Isotherm patterns in the case of a ®xed cylinder at

Re � 200; (a) t � t0, (b) t � t0 � 2:75, (c) t � t0 � 5:55, (d)

t � t0 � 8:25, (e) t � t0 � T, where T � 11:1 is the time period

of a shedding cycle. The isotherms plotted are f � 0:1�0:1�1:0:
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4.2. E�ect of rotational oscillations

In the case of oscillating cylinder, the velocity and
thermal ®elds are dominated by Reynolds number,

Prandtl number, and the amplitude and frequency of
oscillations. The study covers the range of Re up to

200, while the Prandtl number is kept constant at 0.7.
The amplitude of oscillation, YA, ranges between 0

and p and the oscillation frequency, S, ranges between
0 and 2S0, where S0 is the natural Strouhal number.

The ¯ow ®eld in the wake region can be classi®ed

into lock-on and unlock-on regimes. The unlock-on
regime is characterized by periodic shedding of vortices

at natural frequency irrespective of the oscillation fre-
quency. Such a regime occurs when the driving cylin-
der frequency, f, is either smaller or larger enough

than the natural frequency, f0: When the oscillation
frequency approaches f0, the lock-on regime occurs. In

this regime, the vortices are shed at the forced fre-
quency, i.e. the vortex shedding is synchronized with

the cylinder oscillation. This is found to occur within a
band of frequency that brackets the natural frequency

and is called the range of synchronization or the lock-
on frequency range. Fig. 5 shows a comparison

between the lift records for lock-on and unlock-on
regimes at Re � 200 and YA � p=4: For the unlock-on

regime shown in Fig. 5(a), the lift force is ¯uctuating
in wave forms, composed of two e�ects; one induced

by the natural shedding and the other induced by the
forced oscillations. In the lock-on regime shown in

Fig. 5(b), the lift force is ¯uctuating with the forcing
frequency only and with nearly uniform amplitude.

Typical isotherm patterns for the unlock-on regime are
shown in Fig. 6 for the case of FR � 0:5, Re � 200 and

YA � p=4: These patterns are prepared at almost equal

intervals through one complete cycle. The ®gure shows

that the thermal boundary layer is very thin near the

forward stagnation point �Y01808), and extends

downstream to form an oscillating wake-shaped ther-

mal layer. The ®gure also shows that the thermal

wake, especially in the far wake region, is similar to

that for a ®xed cylinder. This feature characterizes, in

general, the unlock-on regimes. Moreover, the two iso-

therm patterns at the beginning and end of the cycle

Fig. 4. Distribution of the local Nusselt number in a complete

cycle of vortex shedding at Re � 200:

Fig. 5. The time variation of lift coe�cient at Re � 200 and

YA � p=4, (a) unlock-on regimes, (b) lock-on regimes.
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�t � 40 and t � 62� are almost the same con®rming the

periodicity of the thermal ®eld. Fig. 7 shows the distri-

bution of the local Nusselt number at the same time

intervals. Although the maximum and minimum values

of Nu are almost the same at all times, the location

clearly changes. However, the local Nusselt continues

to have its lowest values at the rear part of the cylinder

�ÿ608 < y < 608). The Nu distribution varies almost

periodically with the cylinder oscillation. The time

variation of the average Nusselt number at di�erent

frequencies below and above the lock-on range is

shown in Fig. 8. The very high values of Nu at small

time are due to the very small thermal boundary-layer

thickness at the start of ¯uid motion. As time

increases, the thermal boundary-layer thickness

increases and Nu decreases but continues to ¯uctuate

due to vortex shedding. It can be seen that Nu ¯uctu-

ates with variant amplitude in a beating wave form.

Fig. 9 shows the time variation of average Nusselt

number at di�erent frequencies in the lock-on range

for the case of Re � 200 and YA � p=2: It is clear

from the ®gure that Nu ¯uctuates almost regularly

with a frequency equal to twice the imposed cylinder

frequency. The ®gure also shows an appreciable

enhancement in heat transfer for high frequencies

within the lock-on range. On the other hand, at low

lock-on frequencies, the average Nusselt number

becomes even smaller than that for a ®xed cylinder

(see, for example, the case of FR � 0:83).

Fig. 6. Isotherm patterns in one complete cycle of unlock-on

regime at Re � 200, YA � p=4 and FR � 0:5; (a) t � 40, (c)

t � 45:5, (e) t � 51, (g) t � 56:5 and (i) t � 62: The isotherms

plotted are f � 0:1�0:1�1:0:

Fig. 7. The local Nusselt distribution in a complete cycle of

unlock-on regime at Re � 200, YA � p=4 and FR � 0:5:

Fig. 8. The time variation of the average Nusselt number for

unlock-on regimes at Re � 200 and YA � p=4:
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The isotherm patterns for a typical lock-on regime
�Re � 200, YA � p=2� at the two frequency ratios,

FR � 0:83 and FR � 1:11, are shown in Figs. 10 and

11, respectively. In both ®gures, the time period
between plots is one quarter of a complete cycle. The

shedding vortices appear in these ®gures as lumps of
heated ¯uid being convected away from the cylinder.

The locations of such vortices are exactly the same as

appearing in equivorticity lines (not shown here). The
number of these detached lumps of heated ¯uid in case

of FR > 1 is more than that in case of FR < 1 indicat-
ing higher rate of vortex shedding and heat convection.

Moreover, the mechanism of heat di�usion within each
vortex as it moves downstream is clearly shown in

these ®gures. For example, Fig. 11(b) shows that the

¯uid contained within each vortex gets cooler as it
moves away from the cylinder (the number of iso-

therms indicate the temperature level). The periodicity
of the thermal ®eld in each case can be easily veri®ed

from the isotherm plots since the beginning of the

cycle is very much the same as the end of it (see
Fig. 10(a) and (e) and also Fig. 11(a) and (e)).

Fig. 12 shows the distribution of local Nusselt num-

ber within a complete cycle for the case of Re � 200,
YA � p=2 and FR � 1:11: The Nu distributions show

that the maximum Nu values are almost the same. The
locations of these maximums oscillate with the cylinder

oscillation within a range of about 2158 around y �
1808: It can be also observed that the Nu distribution

at the middle of the cycle �t � t0 � 1=2 T� is a mirror

image of that at the end of it �t � t0 � T), which
explains the asymmetry of the thermal ®eld every half

cycle. This phenomenon can be also ascertained by
comparing the isotherm patterns shown in Fig. 10(a)

and (c) and also Fig. 11(a) and (c). In comparison with

Fig. 7, Fig. 12 shows that the Nu curve is ¯atter near

its maximum which results in higher rate of heat trans-

fer for this lock-on case. On the other hand, the ¯uctu-

ations in Nu at any ®xed location are more in the

lock-on regime. For instance, at y � 608, the ¯uctu-

ations in Nu reach 4.6 for lock-on regime, whereas it

reaches 2.2 for the case of unlock-on regime. The com-
puted time-averaged Nusselt number for the cases con-

sidered are presented in Table 2. The table also

contains the percentage increase/decrease in heat trans-

Fig. 9. The time variation of the average Nusselt number

within the lock-on range of frequencies at Re � 200 and

YA � p=2:

Fig. 10. Isotherm patterns for a complete cycle of lock-on

regime at Re � 200, YA � p=2 and FR � 1:11; (a) t � t0, (b)

t � t0 � 0:25 T, (c) t � t0 � 0:5 T, (d) t � t0 � 0:75 T, (e)

t � t0 � T, where T is the time period. The isotherms plotted

are f � 0:1�0:1�1:0:
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fer in comparison with the case of a ®xed cylinder.

The results show that a sensible enhancement in heat

transfer is observed at Re � 200: One can also observe

that this enhancement reaches its maximum near FR �
1 for large amplitudes. At high frequencies outside the

lock-on range, a slight enhancement in heat transfer is

found at low amplitudes, however, as the amplitude

increases, the enhancement in heat transfer decreases.

For example, 8.7% increase in Nu is found at

Re � 200, YA � p=8 and FR � 2: This percentage

decreases to 5.8, 3.15 and 2.3 as the amplitude

increases to YA � p=4, p=2 and p, respectively.
For better understanding of the response of heat

transfer to changes in the amplitude and frequency of

oscillations, let us consider the e�ect of each on the
velocity and thermal ®elds. Larger amplitudes give rise

to a larger shear layer wrapping the cylinder (or a

good part of it) which tends to increase the momentum
and thermal boundary-layer thicknesses leading to a

reduction in Nu. On the other hand, as the frequency
approaches the natural frequency, the ¯uid motion in

the vicinity of the cylinder surface becomes more orga-

nized and intensive similar to what was found by Sax-
ena and Laird [20]. The process of vortex shedding,

though depends on amplitude and frequency, has a
direct e�ect on heat convection since every vortex car-

ries a certain amount of heat. The shedding frequency

and the size of the vortices are both important factors
in¯uencing the heat convection process.

According to the obtained results, the amplitude of

oscillation has an additional in¯uence to the occur-
rence of the lock-on phenomenon. Larger amplitudes

at frequencies near the natural frequency may create
the lock-on phenomenon. Therefore, the e�ect of the

amplitude is twofold; the ®rst is the development of a

larger shear layer and the second is the change of vor-
tex shedding frequency. The two e�ects may have cor-

roborating or contradicting e�ects on heat transfer
depending on the frequency (whether greater than or

less than the natural frequency). Within the lock-on

range, lower frequency of vortex shedding results in
less heat transfer. The e�ect of the rate of vortex shed-

ding on heat transfer are indicated in Fig. 11. The
®gure shows that when FR > 1 �FR � 1:11 and 1.5), the

heat transfer rate increases considerably in comparison

Fig. 11. Isotherm patterns for a complete cycle of lock-on

regime at Re � 200, YA � p=2 and FR � 0:83; (a) t � t0, (b)

t � t0 � 0:25T, (c) t � t0 � 0:5T, (d) t � t0 � 0:75T, (e)

t � t0 � T, where T is the time period. The isotherms plotted

are f � 0:1�0:1�1:0:

Fig. 12. The local Nusselt distribution in a complete cycle of

lock-on regime at Re � 200, YA � p=2 and FR � 1:11:
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with that of a ®xed cylinder. On the other hand, a

decrease in Nu may occur as the rate of vortex shed-
ding decreases as observed in the case of low frequency
lock-on regime �FR � 0:83). The e�ect of synchroniza-

tion is quite clear in Table 2 where the nearer the
forcing frequency from FR � 1, the higher the heat
transfer. The reason for this increase may be attributed
to the intensive ¯uid motion in the vicinity of the

cylinder which leads to increase the rate of heat con-
vection.

5. Conclusions

The problem of heat convection from a cylinder per-
forming rotational oscillations in a cross stream is

investigated in the range of Reynolds number,
ReR200, oscillation amplitude, YARp and frequency

up to twice the natural shedding frequency. Similar to
the velocity ®eld, the thermal ®eld in the wake region
is in¯uenced by the vortex shedding process. Such pro-

cess has two distinct patterns; the ®rst is the unlock-on
pattern in which vortices are shed at the natural fre-
quency and the second is the lock-on pattern in which

vortex shedding is synchronized with the cylinder oscil-
lations. The results revealed that the average Nusselt
number ¯uctuates at twice the cylinder frequency with

appreciable enhancement in heat transfer for high fre-
quencies within the lock-on range. The e�ect of the
amplitude is twofold; the ®rst is the development of a
larger shear layer, and the second is the change of vor-

tex shedding frequency. The two e�ects may have cor-
roborating or contradicting e�ects on heat transfer
depending on the frequency (whether greater than or

less than the natural frequency). Within the lock-on
range, lower frequency of vortex shedding results in
less heat transfer. The e�ect of oscillations on heat

convection in the unlock-on regime is insigni®cant.

Acknowledgements

The authors wish to acknowledge the support
received from King Fahd University of Petroleum and

Minerals during this study. They also wish to thank
the reviewers for their valuable comments that were
instrumental in improving the manuscript.

References

[1] Y. Tanida, A. Okajima, Y. Watanabe, Stability of the

circular cylinder oscillating in uniform ¯ow or in a

wake, J. Fluid Mechanics 61 (4) (1973) 769±784.

[2] R.E.D. Bishop, A.Y. Hassan, The lift and drag forces

on a circular cylinder oscillating in a ¯owing ¯uid,

Proceedings of the Royal Society, Series A (1964) 227.

[3] S.E. Hurlbut, M.L. Spaulding, F.M. White, Numerical

Solution for laminar two dimensional ¯ow about a

cylinder oscillating in a uniform stream, ASME, J.

Fluid Engineering 104 (1982) 214±222.

[4] P.K. Stansby, The locking-on vortex shedding due to

cross-stream vibration of circular cylinder in uniform

and shear ¯ows, J. Fluid Mechanics 74 (1976) 641±665.

[5] O.M. Gra�n, S.E. Ramberg, Vortex shedding from a

cylinder vibrating in line with an incipient uniform ¯ow,

J. Fluid Mechanics 75 (1976) 257±271.

[6] A. Okajima, H. Takata, T. Asanuma, Viscous ¯ow

around a rotationally oscillating circular cylinder, Inst.

Space and Aero. Sci. Rep. 532, University of Tokyo,

1975, pp. 311±337.

[7] P.T. Tokumaru, P.E. Dimotakis, Rotary oscillation con-

trol of cylinder wake, J. Fluid Mechanics 224 (1991) 77±

90.

Table 2

E�ect of amplitude and frequency of oscillations on the time-

averaged Nusselt number

Re YA FR Nu Nu (FR = 0) % Increase

0.50 5.3 0

0.75 5.4 1.8

100 p=8 1.00 5.4 5.3 1.8

1.50 5.29 ÿ0.19
2.00 5.1 ÿ3.7
0.50 5.3 0

0.75 5.16 ÿ2
100 p=4 1.00 5.49 5.3 5.4

2.00 5.31 0.1

4.00 5.3 0

0.50 5.25 ÿ0.1
0.75 5.25 ÿ0.1

100 p=2 1.00 5.67 5.3 6.95

1.50 5.43 2

2.00 5.32 0.3

0.50 7.28 4.1

0.83 7.12 1.8

200 p=8 1.00 7.18 6.99 2.7

1.50 7.34 5.0

2.00 7.6 8.7

0.50 7.35 5.10

0.83 6.76 ÿ3.30
200 p=4 1 7.01 6.99 2

1.50 7.5 7.20

2.00 7.4 5.80

0.50 7.33 4.40

0.83 6.73 ÿ3.70
200 p=2 1.00 8.04 6.99 15.00

1.50 7.66 9.50

2.00 7.21 3.15

0.50 6.97 ÿ0.28
0.83 6.5 ÿ7.00

200 p 1.00 7.8 6.99 11.5

1.5 7.42 6.10

2 7.15 2.30

F.M. Mahfouz, H.M. Badr / Int. J. Heat Mass Transfer 43 (2000) 3093±3104 3103



[8] X. Lu, J. Sato, A numerical study of ¯ow past rotation-

ally oscillating circular cylinder, J. Fluids and Structures

10 (1996) 829±849.

[9] M.H. Chou, Synchronization of vortex shedding from a

cylinder under rotary oscillation, Computer and Fluids

26 (8) (1997) 755±774.

[10] E. Hori, Boundary layer on a circular cylinder in ro-

tational oscillation, Bulletin of JSME 5 (17) (1962).

[11] S. Tanida, Visual observation of the ¯ow past a circular

cylinder performing a rotary oscillation, J. of the

Physical Society of Japan 45 (3) (1978) 1038±1043.

[12] J.M. Wu, J.D. Mo, A.D. Vakili, On the wake of a circu-

lar cylinder with rotational oscillations, AIAA-89-1024,

1989.

[13] P.T. Tokumaru, P.E. Dimotakis, The lift of a cylinder

executing rotary motions in a uniform ¯ow, J. Fluid

Mechanics 255 (1993) 1±10.

[14] J.R. Filler, P.L. Marston, W.C. Mih, Response of the

shear layers separating from a circular cylinder to small-

amplitude rotational oscillation, J. Fluid Mechanics 231

(1991) 481±499.

[15] B.G. Zijnen, Heat transfer from horizontal cylinder to a

turbulent air ¯ow, Applied Science Research A7 (1958)

205±223.

[16] C.T. Leung, N.W.M. Ko, K.H. Ma, Heat transfer from

a vibrating cylinder, Journal of Sound and Vibration 75

(1981) 581±582.

[17] K. Takahashi, K. Endoh, A new correlation method for

the e�ect of vibration on forced-convection heat trans-

fer, Journal of Chemical Engineering, Japan 23 (1990)

45±50.

[18] S.P. Kezios, K.V. Prasanna, E�ect of vibration on heat

transfer from a cylinder in normal ¯ow, Trans. ASME,

Paper No. 66-WA/HT-43, 1966.

[19] K. Sreenivasan, A. Ramachandran, E�ect of vibration

on heat transfer from a horizontal cylinder to a normal

air stream, Int. Journal of Heat and Mass Transfer 3

(1961) 60±67.

[20] U.C. Saxena, A.D.K. Laird, Heat transfer from a cylin-

der oscillating in a cross-¯ow, Trans. ASME, J. Heat

transfer 100 (1978) 684±688.

[21] C. Chin-Hsiang, C. Horng-Nan, A. Win, Experimental

study of the e�ect of transverse oscillation on convective

heat transfer from a circular cylinder, Advances in

Enhanced Heat Transfer, ASME HTD-Vol. 287 (1994)

25±43.

[22] D. Karanth, G.W. Rankin, K. Sridhar, A ®nite di�er-

ence calculation of forced convective heat transfer from

an oscillating cylinder, Int. Journal of Heat and Mass

Transfer 37 (11) (1994) 1619±1630.

[23] C.-H. Cheng, J.L. Hong, A. Win, Numerical prediction

of lock-on e�ect on convective heat transfer from a

transversely oscillating circular cylinder, Int. J. Heat

and Mass Transfer 40 (8) (1997) 1825±1834.

[24] E.P. Childs, R.E. Mayle, Heat transfer on a rotationally

oscillating cylinder in cross-¯ow, Int. J. Heat and Mass

Transfer 27 (1) (1984) 85±94.

[25] W.M. Collins, S.C.R. Dennis, Flow past an impulsively

started circular cylinder, J. Fluid Mechanics 60 (1973)

105±127.

[26] H.M. Badr, S.C.R. Dennis, Time-dependent viscous

¯ow past an impulsively started rotating and translating

circular cylinder, J. Fluid Mech 158 (1985) 447±488.

[27] A. Roshko, On the development of turbulent wakes

from vortex streets, NACA Rep., 1191, 1954.

[28] C.H.K. Williamson, Oblique and parallel modes of vor-

tex shedding in the wake of circular cylinder at low

Reynolds numbers, J. Fluid Mechanics 206 (1989) 579±

627.

[29] E.R.G. Eckert, E. Soehngen, Distribution of heat trans-

fer coe�cients around circular cylinders in cross-¯ow at

Reynolds numbers from 20 to 500, Trans. ASME 74 (3)

(1952) 343±347.

[30] H.A. Kramers, Heat transfer from sphere to ¯owing

media, Physics 12 (1946) p61.

[31] P.D. Richardson, Heat and mass transfer in turbulent

separated ¯ows, Chem. Eng. Sci 18 (1963) 149±155.

[32] V.T. Morgan, The overall convective heat transfer from

smooth circular cylinder, in: J.P. Hartnett, T.F. Irvine

Jr (Eds.), Advances in Heat Transfer, vol. 11, Academic

Press, New York, 1975, pp. 199±264.

[33] P.C. Jain, B.S. Goel, A numerical study of unsteady

laminar forced convection from a circular cylinder, J.

Heat Transfer, Ser. C 98 (2) (1976) 303±307.

[34] A.A. Rashid, Steady-state numerical solution of the

Navier±Stokes and energy equations around a horizon-

tal cylinder at moderate Reynolds numbers from 100 to

500, Heat Transfer Engineering 17 (1) (1996) 31±81.

F.M. Mahfouz, H.M. Badr / Int. J. Heat Mass Transfer 43 (2000) 3093±31043104


